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Background

Data artifacts due to disparate experimental handling is a serious

issue for molecular profiling data, which demonstrates the necessity
of normalization
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Challenge

« One major and unique aspect of RNA sequencing data
normalization is the depth of coverage

 MicroRNAs are molecules regulating gene expression and the

assumption of depth normalization methods may not hold for
microRNA sequencing

self-assessment Trap



Our Study

« We perform a study to assess the Method Reference
performance of existing popular
depth normalization methods
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Empirical Data Preparation

We collect two datasets for the same set of 54 samples
 First dataset (test data)
 First come first serve
» Collected over several years
« Second dataset (benchmark data)

- Balanced library-assignment for the samples to avoid
confounding

* Uniform handling

* Three quality control measures:
1. Calibrators
2. Pooled samples
3. Technical replication
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Empirical Data Overview
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Distribution for the Benchmark Data
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Distribution for the Test Data
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DEA Comparison: Benchmark V.S. Test
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Empirical Data Normalization
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Relative Log Expression for Normalized Data




Rate of Agreement with Benchmark

DEA Comparison: CATPlots
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DEA Comparison: Dendrogram and Scatterplot
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Simulated Data Preparation

We simulate datasets for different scenarios of DE proportion and
median of mean differences

« Clustering 54 empirical samples of benchmark data into two
groups

« Randomly selecting 9 samples from each cluster, with each three
of them from the same sequencing library

 Allocating the remaining 36 samples into two groups randomly,
with ensuring same number of samples from same sequencing
library

« Generating the corresponding simulated test data using the same
allocation of the simulated benchmark data
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Simulated Data Analysis
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Conclusions

* Performance of normalization methods depends on the specific
pattern of differential expression and in general only brought
limited benefits to the analysis of differential expression

« TMM tends to outperform the other scaling-based normalization
methods, and RUVr tended to outperform the other regression-
based normalization methods

« Median and upper-quartile are consistently the worst performers
across all methods examined in our study

« We have developed an R package including paired datasets,
empirical analysis and simulations
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