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Background

Cancer models are essential tools in cancer

. . . . B ~
research for exploring carcinogenesis and 4 g—"
ell line
developing drugs in translational and clinical P
(€€ ‘ ‘
studies. \ 1%

Patient-derived organoids

Evaluation and comparison of cancer models

with human tumors have drawn increasing

attention in recent years. c
Patient-derived xenografts

Existing approaches:

 Congruence (correlation) analysis

* Authentication (machine learning) analysis e e

murine models




Challenges

Congruence analysis provides low prediction
accuracy.

Authentication analysis cannot prioritize the
cancer models.

Data harmonization between human tumors
and cancer models are seldomly considered.
Current studies are limited to the genome-
wide analysis without any pathway-based

evaluations.
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Cell line

Patient-derived organoids

Patient-derived xenografts

Genetically modified
murine models




Congruence Analysis and Selector of CAncer Models (CASCAM)

Module 1: Data harmonization

Module 2: Interpretable machine learning pre-selection
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Acronym:

DEA: differential expression analysis

DE: differential expression

FC: fold change

GSEA: gene set enrichment analysis

NES: normalized enrichment score

SDA: sparse discriminant analysis

DSspa: SDA projected deviance score

ClI: confidence interval

DSgene: gene specific deviance score
DS;ath: pathway specific deviance score
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Module 3: pathway and mechanistic-based selection



Case Study: Identify one representative cell line for the specific
histological subtype in breast cancer



Data source

 We focus on two histological subtypes in
breast cancer (BC).

960 BC patient samples from TCGA and 65 BC
cell lines from CCLE are recruited for analysis.
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Module 1: Data harmonization

The RNA-Seq of tumors and cell lines are not
directly comparable even after several
normalizations.

After applying Celligner using pan cancer data,
we can find them comparable.

Umap after ComBat

Umap without Correction

Umap after Quantile Normalization
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Umap after Celligner (BRCA only)

Umap after Celligner (Pan Cancer)

Cell line

Tumor




Module 1: Data harmonization

The cells from the same origin are gathered, and the basal group is separate from the others.
The non-basal tumors and cells for the downstream analysis.
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Module 2: Interpretable machine learning pre-selection

Machine learning evaluation

Machine learning relevant properties

ILC vs IDC ER+ vs ER- BRCA vs other cancers
o o Gene Assignment )
Training data: TCGA; Training data: TCGA; . . Deviance score
TCGA,; 5-fold CV selection probability
Test data: CCLE Test data: CCLE
SDA 0.91 (0.02) 0.91 0.86 Yes Yes Yes
ElasticNet 0.90 (0.03) 0.93 0.85 Yes Yes No
2D-Hybrid-CNN 0.87 (0.03) 0.93 0.86 No No No
RidgeRegress™ 0.88 (0.02) 0.91 0.84 Yes Yes No
Pearson25* 0.86 (0.01) 0.86 0.90 No No No
KNN 0.85 (0.03) 0.86 0.91 No Yes No
2D-Vanilla-CNN 0.86 (0.04) 0.88 0.85 No No No
1D-CNN 0.86 (0.03) 0.86 0.86 No No No
RandomForest* 0.85(0.01) 0.91 0.82 Yes Yes No
RSLDA 0.81(0.11) 0.77 0.86 Yes Yes Yes
CancerCellNet* 0.79 (0.03) 0.82 0.79 Yes Yes No
LDA 0.80 (0.03) 0.68 0.82 No Yes Yes
NTP 0.61 (0.03) 0.86 0.82 No No Yes
SpearmanMed* 0.40 (0.03) 0.84 0.61 No No Yes
PearsonMed* 0.38 (0.04) 0.84 0.62 No No Yes
Logistic 0.52 (0.04) 0.43 0.65 No Yes 7 No




Module 2: Interpretable machine learning pre-selection

On the genome-wide, each cell line and tumor sample is projected to the same space through SDA.

The SDA-based deviance score, DSSi’l')‘A for cancer model j in subtype k is defined as

(i,k) ~ A
DSspy = lei — bkl /O

where (i, and & are the estimated robustized tumor subtype center and standard deviation.

pval(DSsp ) is obtained from the null distribution constructed by tumor samples.

Assignment probability is denoted as PS%’?.

DSqp 4 is for congruence (correlation) analysis.
Psp 4 is for authentication (machine learning) analysis.
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Module 2: Interpretable machine learning pre-selection

Red circles are the one classified as ILC cell line by

the combination of SDA classification and deviance

score.
0.025 < pval(DSsp,) < 0.975 and P, >0.5is
used as ILC criteria.

14 cell lines are selected for downstream

investigation.
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Module 3: Pathway and mechanistic-based selection

* The gene specific deviance score (DS, ) for cell i for class k in gene g is defined as

g,ik) _ ~ ~
DSgene - |Cg,i — ﬂg,kl /Ug

where (i, and 6, are the estimated robustized tumor subtype center and pooled standard
deviation.

* The pathway specific deviance score for cell i for class k in pathway p is defined as

D S(p,i,k)

—_ - (g,l,k)
path = geometic meangep(|DSgene D

12



Module 3: Pathway and mechanistic-based selection

* Pathways with # DE > 20, 30 < size <
200, and |NES| > 1.5 are selected.

* CAMALI has the best averaged DSt
though it is not the genome-wide best
performer.

* DU4475 has relative worse
performance among the genome-

wide top 5 models.
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Module 3: Pathway and mechanistic-based selection

Epithelial cells Epithelial cells 3
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Conclusion

CASCAM provide a complete framework for authenticating and selecting the most
representative cancer models.

The heterogeneity exists among different cell lines, even though they are all identified as
the same tumor subtype on the genome-wide. (e.g. BCK4 vs. CAMA1)

CAMA1 is overall the best representative cell line for ILC.
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CASCAM
Summary 7
) P
Challenges Solutions

Data harmonization between human tumors and _ _ , _ ,
Celligner is used in this study for data preprocessing

cancer models are seldomly considered

Congruence analysis provides low prediction accuracy | DS, is proposed to measure the absolute distance

Authentication analysis cannot prioritize the cancer | towards the interested tumor subtype center and used
models for cell line ranking

Current studies are limited to the genome-wide | DS, and the related visualization tools are developed

analysis without any pathway-based evaluations for pathway specific cell line selection
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